CONTENTS

Contributors

xviii

Chapter One LIQUID AND ELECTRIC SPACE	_
PROPULSION	T
CHAPTER Background	2
LARGE-EDDY SIMULATION OF TRANS- AND SUPERCRITICAL INJECTION	
H. Müller, C. A. Niedermeier, M. Jarczyk, M. Pfitzner, S. Hickel, and N. A. Adams	5
1 Introduction	5
2 Numerical and Physical Modeling	7
3 Experimental and Numerical Setup	11
4 Results	14
5 Concluding Remarks	21
Acknowledgments	21
References	21
NUMERICAL SIMULATIONS OF MIXING UNDER SUPERCRITICAL PRESSURES OF A SHEAR COAXIAL INJECTOR USING A HIGH-ORDER METHOD: EFFECT OF OUTER JET TEMPERATURE	
H. Terashima and M. Koshi	25
1 Introduction	25
2 Numerical Method	27
3 Results and Discussions	30
4 Concluding Remarks	40
References	41

TEMPERATURE MEASUREMENT OF CRYOGENIC NITROGEN JETS AT SUPERCRITICAL PRESSURE

H. Tani , S. Teramoto, T. Toki, S. Yoshida, K. Yamaguchi,	49
	45
Nomenclature	43
2 Experimental Setup and Conditions	44
3 Results and Discussion	49
4 Concluding Remarks	53
References	54
DEVELOPMENT OF COMBUSTION RESPONSE FUNCTIONS IN A SUBSCALE HIGH-PRESSURE TRANSVERSE COMBUSTOR	
M. Wierman, B. Pomeroy, and W. Anderson	55
1 Introduction	55
2 Experimental Method	56
3 Results	67
4 Concluding Remarks	71
Acknowledgments	73
References	73
ACOUSTIC EXCITATION WITH THE FIRST TRANSVERSE AND THE FIRST COMBINED LONGITUDINAL-TRANSVERSE MODES J. S. Hardi and M. Oschwald	75
1 Introduction	75
2 Experimental Method	77
3 Results	84
4 Discussion	88
5 Concluding Remarks	91
Acknowledgments	92
References	92
INVESTIGATION OF DIFFERENT MODELING APPROACHES FOR COMPUTATIONAL FLUID DYNAMICS SIMULATION OF HIGH-PRESSURE ROCKET COMBUSTORS B. Ivancic, H. Riedmann, M. Frey, O. Knab, S. Karl,	
and K. Hannemann	95
1 Introduction	95
2 Test Case Description	97
3 Inconsistency of the Test Data	98
4 Presentation of the Applied Tools, Models, and Settings	100

PROGRESS IN PROPULSION PHYSICS

	5 Evaluation	and Comparison of the Final Sime	ulation Result	ts 104
	6 Parameter	Studies Conducted During the De	velopment	106
	of the Tool			. 100
	A alara anala dana an	g Remarks		. 114
	Acknowledgmen	ts		. 115
	References			. 115
EVC Fof	DUTION OF CO	OOLING-CHANNEL PROPERTIE PECT RATIO	ES	
	M. Pizzarelli, F.	. Nasuti, and M. Onofri		. 117
	1 Introductio	on		. 117
	2 Validation	of the Model		. 118
	3 Test Case I	Description		. 122
	4 Results	· · · · · · · · · · · · · · · · · · ·		. 123
	5 Concluding	r Remarks		. 127
	References			. 127
NUN OF '	AERICAL AND THE METHANE	EXPERIMENTAL INVESTIGATI	ION E	
CON	ABUSTION CHA	AMBER		100
	Y. Daimon, H.	Negishi, M. Koshi, and D. Suslov		. 129
	1 Introductio	on		. 129
	2 Experimen	tal and Computational Setup		. 131
	3 Validation			. 136
	4 Discussions	5		. 138
	5 Concluding	g Remarks		. 142
	Acknowledgmen	$ts \ldots \ldots$. 143
	References			. 143
INJI OXY CHA	ECTOR CHARA GEN-METHAN MBER M. P. Colono, S	CTERIZATION FOR A GASEOU IE SINGLE ELEMENT COMBUS	JS TION	
	O. J. Haidn, and	d O. Knab		. 145
	Nomenclature .			. 145
	1 Introductio	on		. 146
	2 Test Specin	men and Experimental Setup		. 147
	3 Experimen	tal Results and Discussion		. 152
	4 Concluding	g Remarks		. 162
	Acknowledgmen	- .ts		. 163
	References			. 163

CONCE	CPT OF ELECTRIC PROPULSION REALIZATION	
FOR HI	GH POWER SPACE TUG E. Zahlananhay, A. V. Camanhin, and A. E. Caladukhin, 1	65
<i>L</i>	E. Zakharenkov, A. v. Semenkin, and A.E. Soloaakhin 1	00
1	Introduction $\ldots \ldots 1$.65
2	Projects and Missions	66
3	Approach and Issues of Electric Propulsion System	
	Realization for High-Power Space Tug 1	72
4	Concluding Remarks	78
Re	ferences	78
Chapter	Two SOLID AND HYBRID PROPULSION 18	31
CHAP'	TER Background	82
CONTR CAUSE	AAIL FORMATION IN THE TROPOPAUSE REGION D BY EMISSIONS FROM AN ARIANE 5 ROCKET	
Ch	$b. Voigt, U. Schumann, and K. Graf \ldots \ldots \ldots \ldots \ldots 1$	83
1	Introduction	.84
2	Aerosol Observations in Rocket Exhaust Plumes 1	84
3	Polar Mesospheric Cloud Formation After Rocket Launches 1	86
4	Theoretical Analysis of Rocket Exhaust Water Condensation Trail Formation in the Tropopause Region	.87
5	Meteorological Conditions During the Launch from the Ariane 5-ECA Rocket	.90
6	Satellite Observations of Contrail Formation in the Exhaust Plume from the Ariane 5-ECA Rocket	.92
7	Summary and Outlook	94
Re	ferences	.95
DETAII OF ALU <i>S</i> .	LED ANALYSIS OF A QUENCH BOMB FOR THE STUDY JMINUM AGGLOMERATION IN SOLID PROPELLANTS Gallier, JG. Kratz, N. Quaglia, and G. Fouin	.97
1	Introduction	.97
2	Quench Bomb Results	99
3	Numerical Simulations	03
4	Improved "2-in-1" Quench Bomb	:05
5	Concluding Remarks	210
Ac	knowledgments	11
Re	ferences	11

xiii

ANALYSIS OF PRESSURE BLIPS IN AFT-FINOCYL SOLID ROCKET MOTOR

M. Di Giacinto, B. Favini, and E. Cavallini	213
1 Introduction	213
2 Literature Survey on Ballistic Anomalies in Solid Rocket	
Motors	215
3 Solid Rocket Motor Internal Flowfield Model for Ballistic	
Anomalies Investigation	216
4 Numerical Simulations Setup: Baseline Solid Rocket Motor	000
	223
5 Results	224
0 Concluding Remarks	201
	239
References	239
A WIDE CHARACTERIZATION OF PARAFFIN-BASED FUELS	
MIXED WITH STYRENE-BASED THERMOPLASTIC POLYMERS	
FOR HYBRID PROPULSION M. Poissobi, P. Milova, I. Calfotti, I. Di Londra	
and A. K. Golovko	241
1 Introduction	941
1 Introduction	241
2 Investigated Materials	242
3 I hermal Characterization	243
4 Viscoelastic Unaracterization	247
5 Mechanical Properties	200
6 Properties of Traditional HTPB- and Parami-Based Fuels	208
7 Concluding Remarks	209
References	200
RHEOLOGICAL, OPTICAL, AND BALLISTIC INVESTIGATIONS	
OF PARAFFIN-BASED FUELS FOR HYBRID ROCKET	
PROPULSION USING A TWO-DIMENSIONAL SLAB-BURNER	
M. Kobala, E. Ioson, H. Ciezki, S. Schlechtriem, S. al Betta, M. Connola, and I. Delvica	263
	200
1 Introduction and Theory	263
2 Experiments	267
3 Concluding Remarks	280
Acknowledgments	280
References	280

THI IN S	CORETICAL PREDICTION OF REGRESSION RATES	
IIN C	K Ozawa and T Shimada	283
	Nerromalatura	200
	Nomenciature	283
	1 Introduction	280
	2 Modeling and Hypotheses of Flows in Swiri-Injection Hybrid Rocket Engines	286
	3 Derivation of Regression Rates in Swirl-Injection	
	Hybrid Rocket Engines	288
	4 Comparison of the Regression Rates of Swirl Engines	
	with Experiments	300
	5 Concluding Remarks	304
	Acknowledgments	305
	References	305
Chap	cer Three SCRAMJET AND PRESSURE-GAIN COMBUSTION	307
		200
OTT		
CH	APTER Background	308
CH IGN DU(APTER Background ITION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC CT	308
CH IGN DU(APTER Background ITION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC CT M. L. Bateup	308 309
CH IGN DUC	APTER Background ITION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC CT M. L. Bateup 1 Introduction	308 309 309
CH IGN DU(APTER Background	308 309 309 310
CH IGN DUC	APTER Background IIIION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC CT M. L. Bateup IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	308 309 309 310 312
CH IGN DUC	APTER Background Introduction Introduction Introduction 2 Experimental Setup 3 Results and Discussion 4 Concluding Remarks	308 309 309 310 312 317
CH IGN DUC	APTER Background Introduction Introduction Introduction 2 Experimental Setup 3 Results and Discussion 4 Concluding Remarks APTER Background Introduction	308 309 309 310 312 317 318
CH IGN DUC	APTER Background IIIION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC CT M. L. Bateup IIIntroduction 1 Introduction IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	308 309 309 310 312 317 318 318
CH IGN DUC COI PRO	APTER Background Introduction IITION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC CT M.L. Bateup 1 Introduction 2 Experimental Setup 3 Results and Discussion 4 Concluding Remarks Acknowledgments References VVERSION OF HYDROCARBON FUEL IN THERMAL OTECTION REACTORS OF HYPERSONIC AIRCRAFT A. L. Kuranov, A. M. Mikhaylov, and A. V. Korabelnikov	308 309 309 310 312 317 318 318 318
CH IGN DUC COI PRO	APTER Background Introduction ITION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC T M. L. Bateup 1 Introduction 2 Experimental Setup 3 Results and Discussion 4 Concluding Remarks Acknowledgments References VVERSION OF HYDROCARBON FUEL IN THERMAL OTECTION REACTORS OF HYPERSONIC AIRCRAFT A. L. Kuranov, A. M. Mikhaylov, and A. V. Korabelnikov 1 Introduction	309 309 310 312 317 318 318 318 321 321
CH IGN DUC COI PRO	APTER Background Introduction IIItroduction Introduction 2 Experimental Setup Introduction 3 Results and Discussion Introduction 4 Concluding Remarks Introduction Acknowledgments Introduction VERSION OF HYDROCARBON FUEL IN THERMAL OTECTION REACTORS OF HYPERSONIC AIRCRAFT A. L. Kuranov, A. M. Mikhaylov, and A. V. Korabelnikov IIItroduction IIItroduction	309 309 310 312 317 318 318 318 321 321 321
CH IGN DUC COI PRO	APTER Background Introduction ITION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC T M.L. Bateup 1 Introduction 2 Experimental Setup 3 Results and Discussion 4 Concluding Remarks Acknowledgments References VVERSION OF HYDROCARBON FUEL IN THERMAL OTECTION REACTORS OF HYPERSONIC AIRCRAFT A. L. Kuranov, A. M. Mikhaylov, and A. V. Korabelnikov 1 Introduction 2 Experimentation	309 309 310 312 317 318 318 321 321 322 325
CH IGN DUC COI PRO	APTER Background Introduction ITION LENGTH STUDY OF JP-8 + 100 IN A SUPERSONIC T M. L. Bateup 1 Introduction 2 Experimental Setup 3 Results and Discussion 4 Concluding Remarks Acknowledgments References NVERSION OF HYDROCARBON FUEL IN THERMAL OTECTION REACTORS OF HYPERSONIC AIRCRAFT A. L. Kuranov, A. M. Mikhaylov, and A. V. Korabelnikov 1 Introduction 2 Experimentation	309 309 310 312 317 318 318 318 321 321 322 325 329
CH IGN DUC COI PRO	APTER Background Image: Constraint of the second secon	309 309 310 312 317 318 318 321 321 321 322 325 329 332
CH IGN DUC COI PRO	APTER Background Introduction Introduction Introduction 2 Experimental Setup Introduction 3 Results and Discussion Introduction 4 Concluding Remarks Introduction Acknowledgments Introduction VVERSION OF HYDROCARBON FUEL IN THERMAL VTECTION REACTORS OF HYPERSONIC AIRCRAFT A. L. Kuranov, A. M. Mikhaylov, and A. V. Korabelnikov 1 Introduction 2 Experimentation 3 Mathematical Model 4 Calculation Results 5 Concluding Remarks	309 309 310 312 317 318 318 318 321 322 322 322 322 332

PROGRESS IN PROPULSION PHYSICS

SPECIFIC FEATURES OF IGNITION AND FLAMEHOLDING OF HYDROCARBON FUELS IN HIGH-SPEED FLOW

M. Golajela	. 333
$1 \qquad \text{Introduction} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $. 333
2 Combustor Model and Experimental Setup	. 336
3 Measurements	. 337
4 Results and Discussion	. 337
5 Concluding Remarks	. 350
Acknowledgments	. 350
References	. 350
THE ROLE OF PRESUMED PROBABILITY DENSITY FUNCTIONS IN THE SIMULATION OF NONPREMIXED TURBULENT COMBUSTION	353
1 Introduction	. 354
2 Compustion Model	300
5 Flow Equations and Numerical Solution	361
5 Concluding Remarks	371
References	372
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER	975
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov	. 375
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Ducklam Example time	375 375
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3	375 375 377 377
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3 Results 4 Concluding Bomarks	375 375 377 380 387
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3 Results 4 Concluding Remarks	375 375 377 380 387 387
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3 Results 4 Concluding Remarks Acknowledgments References	375 375 377 380 387 387 387 387
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3 Results 4 Concluding Remarks Acknowledgments References MATHEMATICAL MODELING OF DETONATION INITIATION VIA FLOW CUMULATION EFFECTS I Somemory P. Uthin and I. Althemedian and I. Althemedian and I. Althemedian and I.	375 375 377 380 387 387 387
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3 Results 4 Concluding Remarks Acknowledgments References MATHEMATICAL MODELING OF DETONATION INITIATION VIA FLOW CUMULATION EFFECTS I. Semenov, P. Utkin, and I. Akhmedyanov	375 375 377 380 387 387 387 389
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3 Results 4 Concluding Remarks 4 Concluding Remarks Acknowledgments References NATHEMATICAL MODELING OF DETONATION INITIATION VIA FLOW CUMULATION EFFECTS I. Semenov, P. Utkin, and I. Akhmedyanov 1 Introduction 2	 375 377 380 387 387 387 389 389 389 389
THREE-DIMENSIONAL NUMERICAL SIMULATION OF A CONTINUOUSLY ROTATING DETONATION IN THE ANNULAR COMBUSTION CHAMBER WITH A WIDE GAP AND SEPARATE DELIVERY OF FUEL AND OXIDIZER S. M. Frolov, A. V. Dubrovskii, and V. S. Ivanov 1 Introduction 2 Problem Formulation 3 Results 4 Concluding Remarks 4 Concluding Remarks Acknowledgments References MATHEMATICAL MODELING OF DETONATION INITIATION VIA FLOW CUMULATION EFFECTS I Introduction 1 Introduction 2 Numerical Methodology for Three-Dimensional Flows with Detonation Waves 3 Detonation Initiation in Methane-Air Mixture	 375 375 377 380 387 387 387 389 389 389 389 390 399

 4 Detonation Initiation in Hydrogen–Air Mixture in Electrochemical Pulse Detonation Engine Chamber 5 Concluding Remarks	. 401 . 404 . 405
Chapter Four GAS TURBINE PROPULSION	407
CHAPTER Background	. 408
TESTING AND ANALYSIS OF THE IMPACT ON ENGINE CYCL PARAMETERS AND CONTROL SYSTEM MODIFICATIONS USING HYDROGEN OR METHANE AS FUEL IN AN INDUSTRIA GAS TURBINE	E L
H. HW. Funke, J. Keinz, S. Börner, P. Hendrick, and P. Fleing	400
Unu R. Eising	. 409
1 Introduction	. 409
 Experimental Gas Turbine Test Rig APU GTCP 36-300 . Conversion of the APU GTCP 36-300 from Hydrogen 	. 411
to Methane	. 413
Cycle with Hydrogen and Methane	. 417
5 Concluding Remarks	. 425
References	. 425
COMPUTATIONAL FLUID DYNAMICS / MONTE CARLO SIMULATION OF DUSTY GAS FLOW IN A "ROTOR–STATOR" SET OF AIRFOIL CASCADES	
Yu. M. Tsirkunov and D. A. Romanyuk	. 427
1 Introduction	. 427
2 Arrangement of Cascades and Schematic of the Flow	. 429
3 Modeling of the Carrier Gas Flow	. 429
4 Modeling of the Particle-Phase Motion	. 430
6 Computational Begults and Discussion	. 457 /30
7 Concluding Remarks	. 443
Acknowledgments	. 443
References	. 444

Author Index

445