Содержание

Сокра	ащения и условные обозначения	5
	Сокращения	5
	Условные обозначения	6
Преди	исловие	7
Введе	ение	9
Глава	1. Основные понятия	11
1.1	Понятие долговечности и назначенного ресурса	11
1.2	Понятие стратегии управления ресурсом	12
1.3	Схема определения назначенного ресурса основных деталей	13
1.4	Профиль полёта, типовой полётный цикл и обобщённый	
	типовой полётный цикл	15
1.5	Виды нагрузок, действующих на основные детали	18
1.6	Механизмы исчерпания долговечности основных деталей	19
1.7	Диаграмма циклического упругопластического деформирования	
	материала основной детали	21
1.8	Понятие повреждаемости основных деталей по малоцикловой	
	усталости	23
1.9	Понятие повреждаемости основных деталей по длительной	
	прочности	24
_		
Глава	2. Определение назначенного ресурса основных деталей	
2.1	по концепции безопасной долговечности	25
2.1	Экспериментальное определение назначенного ресурса основных	
	деталей по концепции безопасной долговечности	25
	2.1.1 Экспериментальное определение долговечности основных	
	деталей по малоцикловой усталости	25
	2.1.2 Определение коэффициента запаса по малоцикловой	
	усталости	30
	2.1.3 Определение необходимого объёма ресурсных испытаний	
	для основных деталей	31
2.2	1 11	
	основных деталей по концепции безопасной долговечности	32
	2.2.1 Расчётное определение долговечности основных деталей	
	по концепции безопасной долговечности	32
	2.2.2 Определение величины запаса, зависящей от достоверности	
	данных, используемых для расчётно-экспериментального	
	определения долговечности основных деталей	33

Содержание

	2.2.3	Использование модельных дисков для разработки системы
	~	запасов
2.3		ставление подходов по определению назначенного
		оса основных деталей по концепции безопасной долговечности
	на ос	нове испытаний и расчётно-экспериментальным методом
Глава	_	ределение назначенного ресурса основных деталей
		концепции безопасного развития дефекта
3.1	Общі	ие замечания
	3.1.1	Вероятностный метод определения долговечности основных
		деталей по концепции безопасного развития дефекта
	3.1.2	Детерминированный метод определения долговечности
		основных деталей по концепции безопасного развития
		дефекта
3.2		ые, необходимые для расчётного определения долговечности
		онцепции безопасного развития дефекта
	3.2.1	Виды дефектов в заготовках и готовых основных деталях
	3.2.2	Получение кривой дефектности типа «керамические
		включения» в гранулируемых никелевых сплавах
	3.2.3	Методы неразрушающего контроля и вероятностные кривые
		выявляемости дефектов
		Ультразвуковой метод неразрушающего контроля
		Капиллярные методы неразрушающего контроля
		Вихретоковый метод неразрушающего контроля
	3.2.4	Трещиностойкость материалов основных деталей
		3.2.4.1 Трещиностойкость при циклическом нагружении
		Вводные замечания
		Коэффициент интенсивности напряжений
		Моделирование фронтов трещины методом конечных
		элементов
		Понятие линейной механики разрушения
		Получение кинетической диаграммы на основе
		испытания стандартных образцов при постоянной
		амплитуде нагружения
		Некоторые особенности кинетической диаграммы
		Определение границ участка II кинетической
		диаграммы «на глаз»
		Определение границ участка ІІ кинетической
		диаграммы итерационным методом
		Определение средних характеристик
		трещиностойкости по результатам испытаний
		на скорость роста трещины усталости нескольких
		образцов

Содержание 135

	Построение кинетической диаграммы на основе фрактографических исследований поверхностей		
	фрактографических исследовании поверхностей разрушения образцов	73	
	разрушения образцов	13	
	на скорость роста трещины усталости	79	
	3.2.4.2 Трещиностойкость ползучести	95	
2.2		93	
3.3	Определение долговечности и назначенного ресурса основных		
	деталей по концепции безопасного развития дефекта	00	
	на основе детерминированного подхода	99	
	Процедура определения долговечности	00	
	по детерминированному подходу	99	
	Выбор зон в основных деталях для расположения		
	начальных дефектов	101	
	Определение назначенного ресурса основных деталей		
	с использованием «остаточного ресурса»	102	
3.4	Определение долговечности и назначенного ресурса основных		
	деталей по концепции безопасного развития дефекта		
	на основе вероятностного подхода	103	
	Процедура определения долговечности по вероятностному		
	подходу	103	
	Оценка инкубационного периода роста трещины	106	
3.5	Определение назначенного ресурса для основных деталей	107	
Глава	4. Алгоритмы контроля выработки назначенного ресурса основных		
	деталей в эксплуатации и уточнение обобщённого типового		
	полётного цикла	108	
4.1	Особенности длительного и циклического нагружения		
	газотурбинного двигателя, базы данных по нагруженности		
	газотурбинных двигателей	108	
4.2	Алгоритмы контроля выработки назначенного ресурса		
	для основных деталей по концепции безопасной долговечности	110	
4.3	Алгоритмы контроля наработки до инспекции основных деталей		
	по концепции безопасного развития дефекта	112	
4.4	Уточнение обобщённого типового полётного цикла	112	
Прило	ожение А. Алгоритм обработки результатов испытаний образца		
вн	ецентренного растяжения на скорость роста трещины усталости		
ИТ	ерационным методом	115	
	ожение Б. Примеры верификации методики определения долговечности		
oci	новных деталей по концепции безопасного развития дефекта на основе		
дет	герминированного подхода	119	
Литер	Литература		